

Gel and mass spectrometry-based proteomic services

The Cambridge Centre for Proteomics, established in 2000, is a world leading facility tackling proteomic-based problems and actively engages in method development. We provide a considerable amount of expertise in proteomics and mass spectrometry based techniques to both academic and industrial researchers.

Experiments are performed using state-of-the-art instrumentation, which includes a range of nanoLC systems coupled with Orbitrap mass spectrometers. We currently offer full quantitative analysis on virtually any sample of any complexity.

All our proteomics applications are supported by robust informatics pipeline and data analysis.

Protein Identification by Mass Spectrometry

CCP has expanded its range of LC systems and mass spectrometers in recent years which has meant that the throughput of samples has increased considerably, and therefore, turn-around times are continually being reduced.

We currently have state-of-the-art instrumentation (Orbitrap family mass spectrometers and associated nano-LCs) for the identification of proteins from gel bands or solution.

Each experiment is tailored to suit each sample, ensuring that maximum sequence coverage is obtained. Full sample preparation from gel-based samples or proteins in solution is performed including reduction, alkylation and enzymatic digestion.

Peptides are separated by high-resolution nanoscale chromatography and high mass accuracy $\mathrm{MS} / \mathrm{MS}$ spectra are automatically acquired. Finally, data are searched against standard or custom databases using the Mascot search algorithm and search results are then emailed with a secure dropbox connection.

CCP has a range of softwares to analyse and quantify proteomic data including MASCOT, Proteome Discoverer, Scaffold and MaxQuant.

Support is always available for data interpretation or any data-related queries.

Services available:

- Full sample processing, including reduction, alkylation and enzymatic digestion of proteins within the gel bands or solutions.
- High resolution reverse-phase chromatography followed by high mass accuracy MS/MS.
- Mascot database searching and interpretation of data using standard or custom databases.

(b)

(c)

Cambridge Centre for Proteomics
Mascot Search Results

Figure 1. Data dependent acquisitions was performed using the Q Exactive Orbitrap instrument to automatically select and fragment peptides formed from tryptic digests. (a) LC-MS/MS traces are generated which give a readout of intensity versus time (b) MS/MS spectra are generated which give specific information relating to the sequence of the peptides (c) the MS/MS data is converted and searched against specific databases using the Mascot search algorithm. The output is a search result file which lists all identified proteins.

High-Throughput Protein Quantitation by Mass Spectrometry

One of the of the major strengths of CCP is the highthroughput quantitative analysis of proteins by mass spectrometry-based techniques. In recent years, CCP has carried out extensive method development utilising isobaric tags (Tandem Mass Tags ${ }^{\top M}$, Thermo) for the quantitation of multiple protein samples.

Individual protein samples which are to be compared are reduced, alkylated and digested. Each digest is then labelled with isobaric aminereactive tags (TMT). The samples are then pooled and fractionated according to hydrophobicity by high pH reverse-phase chromatography. Fractions are collected, lyophilised and desalted before being individually analysed by LC-MS/MS. TMT-labelled samples are analysed by the SPS-MS3 method using an Orbitrap Lumos mass spectrometer for high quantitative accuracy.

The resulting MS/MS spectra are then analysed using Proteome Discoverer platform (PD, Thermo) which outputs protein identifications, quantitation and FDR estimation.

As well as quantitation of isobarically tagged peptides, we can also quantify light and heavy peptides which have been produced by Stable Isotope Labelling of Amino Acids in Cell Culture (SILAC). SILAC can be used for the relative quantitation of proteins for two or more samples.
It involves in vivo incorporation of a heavy amino acid tag into proteins, followed by relative quantitation at the MS level.

Services Available

- Full sample preparation including protein estimation, reduction, alkylation, digestion and TMT (6-plex or 10-plex) labelling.
- We don't provide SILAC labelling but can process SILAC-labelled samples.
- Reverse-phase fractionation and collection of peptides.
- Sample desalting.
- LC-MS/MS of fractions.
- Data processing including database search and quantitation using our in-house R scripts. Limma package is utilised for statistical analysis.
(a)

(b)

Figure 2. (a) Detail showing the MS/MS spectrum of a TMT reporter ions from six samples. The intensity of each reporter ion in the MS/MS spectrum is measured and compared with each of the others for relative quantitation. (b) Detail showing light and heavy SILAC labelled peptide peaks from two different samples. Again, the areas under both the light and heavy peaks are calculated and compared, this time at the MS level.

Post-translational modification (PTM) mapping and synthetic modifications mapping of non-complex samples

This experiment involves the identification and location of modifications by LC-MS/MS. It usually involves the purification by immunoprecipitation or pull-down followed by separation of the enriched proteins on a SDS-PAGE, excision of the protein of interest, digestion and analysis by LC-MS/MS.

LC-MS/MS data are analysed using Mascot database searches and annotated spectra are then manually verified by analysing specific sequence ions where PTM sites may be identified.

In principle there is no limit to the type or number of modifications that can be searched. Modifications which can be routinely searched include phosphorylation, methylation, acetylation, ubiquitination, oxidation and sulfation.

Furthermore, we can also routinely map custom synthetic modifications to specific amino acids.

Services Available

- Full sample preparation.
- LC-MS/MS experiments.
- Full data analysis including assignment of PTM sites, where possible.
(a)
(b)

(c)

(d)

Figure 3. (a) Mass spectrum of a phosphopeptide which is selected for MS/MS to give (b) a prominent fragment ion which has lost phosphoric acid. Few backbone cleavage ions are produced, and so the fragment ion is selected for a second stage of MS/MS (i.e. MS^{3}) (c) which yields abundant sequence ions. (d) The data are searched using Mascot and the output reveals potential phosphopeptides which are then interrogated further.

Mass Spectrometers

- Thermo Scientific Lumos and Dionex 3000 RSLCnano LC (1)
- Thermo Scientific Q Exactive and Dionex 3000 RSLCnano LC (2)
(1)

- Bruker timsTOF HT and nanoElute 2 LC
(3)
(2)

(3)

CCP Charges

MASS SPECTROMETRY METHODS
 LC-MS/MS

Pricing guidance notes

1. Purified single proteins from gels or solution generally only require a 60 minute LCMS/MS run.
2. More complex samples (e.g pulldown/IP experiment or total lysates which have been run on a gel or pull-downs containing proteins in solution) generally require a longer 120 min to reduce the complexity of the sample and generate a greater number of protein identifications.
3. Please note that VAT is payable if users work in the UK

Academic (£)
Industry (£)
Sequencing of proteins
from 1D gel bands (includes sample preparation and database searching)
< 5 bands/spots
(prices per spot/band)
60 min LC-MS/MS run
200
300

120 min LC run 230
340

5 or more bands or spots (prices per spot/band)

60 min LC-MS/MS run $165 \quad 245$
120 min LC-MS/MS run 205
275
Sequencing of proteins
from solutions (solutions
must be free of salts and
detergents. If desalting is
Required, a $£ 25$ charge will be applied).

60 min LC run
200
300
120 min LC run 230

MASS SPECTROMETRY METHODS (Continued)

TMT ${ }^{\text {TM }}$ quantitation

Sample preparation including protein precipitation, reduction/ alkylation/digestion, TMT	Academic (£)	Industry (£)
Labelling (6-Plex), $1^{\text {st }}$ dimension		
LC and collection of up to 30		
fractions:	1200	
6-plex	1540	1500
10-plex	2100	1750
16-plex	2750	2400
18-plex		3000
LC-MS/MS per run (long		
gradients, including Mascot searching)	250	400
Quantitation analysis from	80 per hour	110 per hour
above data (custom statistical analysis		

GEL-BASED METHODS

Running gels (including sample prep., per gel and staining with coomassie or silver and scanning):

Academic (£) Industry (£)
1D minigel
85
155

Additional enzyme requirements

For the majority of experiments, trypsin is usually the enzyme of choice to cleave most proteins. However, there are occasions when other enzymes may offer greater protein coverage. The most common alternative enzyme is chymotrypsin and because of the additional cost of this enzyme, we charge an additional $£ 40$ to the cost of all experiments. For any other enzymes requested, the user will be required to pay the cost incurred by CCP for purchasing the enzyme.

Protein precipitation and protein/peptide estimation

For some experiments, samples which require analysis directly from solutions may have been prepared in buffers, which are incompatible with LC-MS/MS analysis, particularly detergents. In these cases, the protein will need to be extracted from the buffer by precipitation methods. For accurate label-free quantitation, the protein or peptide concentration will need to be measured.

TCA/acetone precipitation
Academic (£) Industry (£)
Up to 5 samples: 120 150
For each additional 5 samples 60 75
Protein estimation:
Up to 10 samples: 80 110
For each additional 10 samples: 50 80
Peptide estimation:
Pierce fluorometric assay
Up to 10 samples: 125 155
For each additional 10 samples: 90 120

Desalting of samples

For samples in solution which contain salts, it is necessary to desalt before they are analysed.
Desalting using Pierce desalting columns
1 sample:
60
90
Each additional sample: 3045

Cambridge Centre for Proteomics

http://proteomics.bio.cam.ac.uk

CCP Group email: ccpcore@bioc.cam.ac.uk

 UNIVERSITY OF CAMBRIDGE

Mailing address:

Cambridge Centre for Proteomics
Gleeson Building
University of Cambridge
Tennis Court Road
Cambridge
CB2 1QR

Contact details

To discuss using the service, either for the standard experiments described or custom experiments, please contact:

Dr. Mike Deery

Proteomics Facility Manager
Tel: 01223760253
Email: md289@cam.ac.uk

Prof Kathryn Lilley
Proteomics Facility Group Leader
Tel: 01223760255
Email: k.s.lilley@bioc.cam.ac.uk

