skip to primary navigationskip to content


Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, Hesse A, Coute Y, Ferro M, Bruley C, and Burger T. DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics Bioinformatics 2016 doi:10.1093/bioinformatics/btw580.

Perez-Riverol Y, Gatto L, et al. Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Comput Biol. 2016 Jul 14;12(7):e1004947. doi:10.1371/journal.pcbi.1004947.

Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome Res. 2016 Apr 1;15(4):1116-25. doi:10.1021/acs.jproteome.5b00981.

Christoforou A, et al A draft map of the mouse pluripotent stem cell spatial proteome Nature Communications (2016) 12;7:9992. doi: 10.1038/ncomms9992.

Marondedze C, et al ,The RNA-binding protein repertoire of Arabidopsis thaliana  Scientific Reports (2016) 6:29766. doi: 10.1038/srep29766

Breckels et al,  Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics. PLoS Comput Biol. (2016) May 13;12(5):e1004920. doi: 10.1371/journal.pcbi.1004920.

Fabre B, et al Analysis of Drosophila melanogaster proteome dynamics during embryonic development by a combination of label-free proteomics approaches. Proteomics. (2016) Aug;16(15-16):2068-80. doi: 10.1002/pmic.201500482. Epub 2016 May 10.

Alam MT et al and Ralser M , The metabolic background is a global player in Saccharomyces gene expression epistasis. Nature Microbiol. (2016) Feb 1;1:15030. doi: 10.1038/nmicrobiol.2015.30.

Marondedze C  et al A Quantitative Phosphoproteome Analysis of cGMP-Dependent Cellular Responses in Arabidopsis thaliana. Mol Plant. (2016) Apr 4;9(4):621-3. doi: 10.1016/j.molp.2015.11.007.